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Diffusion in materials with variable temperature
Part I One-dimensional problems

J. R. FRADE
Departamento de Engenharia Cerâmica e do Vidro, Universidade de Aveiro,
3800 Aveiro, Portugal

Solutions for diffusion in non-isothermal conditions are derived by analogy with diffusion in

isothermal conditions when diffusivity is constant or time dependent. The effects of heating

or cooling rates on the concentration profiles, boundary-layer thickness, and amount of

material transferred, are described and can be assessed even when the temperature

dependence of diffusivity and/or interfacial concentration is unknown. The effects of the rate

of change in temperature on the amount of material transferred can be used also to assess

whether this is controlled by diffusion or reaction.
1. Introduction
High-temperature processing of materials often in-
volves non-isothermal conditions. The rate of change
in temperature is then controlled to achieve the re-
quired heat treatment. For example, the glass-ceramic
method usually requires heating at a controlled rate
from the nucleation stage to an upper temperature for
obtaining the required crystallization without defor-
mation of the glass ceramic products. Similarly, non-
isothermal heat treatments might be used to optimize
phase transformations in metallic or ceramic systems.

Significant diffusion-controlled effects might also
occur when materials are spontaneously cooled after
processing or heat treated at high temperatures. In
fact, quenching is often an efficient method for preven-
ting further changes, except for cases when materials
cannot stand thermal shock. Typical diffusion-con-
trolled changes during cooling are probably impurity
segregation in many metallic or ceramic systems, and
change in concentration of point defects in materials.
For example, the concentration of vacancies is likely
to drop with decreasing temperature, and this usually
requires transport to grain boundaries or other inter-
faces.

Another method which requires understanding of
the expected trends is thermal analysis used for study-
ing powder reactions. Interpretation of this type of
result requires solutions for several different mecha-
nisms [1, 2]. In addition, non-isothermal schedules
are also often used for improving the sintering of
powder compacts [3—6]. Johnson [3] proposed solu-
tions for mechanisms controlled by viscous-flow, lat-
tice diffusion, or grain-boundary diffusion.

If a generic physicochemical process is diffusion
controlled, it is often found that diffusivity varies by
several orders of magnitude with changes in temper-
ature. The time scale thus decreases on heating and
increases on cooling. In addition, the time dependence
is also affected, and typical parabolic laws fail. The

kinetics of diffusion-controlled processes in non-iso-
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thermal conditions also changes when a boundary
condition such as surface concentration C(0, t)"
C

0
(¹ ) varies with temperature; this corresponds to

changes in driving-force with temperature, and can be
transformed to time dependence when temperature
varies with time in known ways. Solutions for both
time-dependent, diffusivity D(t) and surface concen-
tration C

0
(t) can be found in textbooks [7], and have

been used by some authors [8] for interpreting prop-
erties of materials which might be dependent on diffu-
sion-controlled segregation. The present work is based
on expressing the material balances in terms of tem-
perature rather than time, to emphasize the role of the
rate of change in temperature, as reported previously
for the diffusion-controlled behaviour of particles [9].

Diffusivity is usually extracted by maintaining the
surface in contact with a source or sink of solute, for
different times, and measuring the concentration pro-
files attained in this way. Typical experiments are
performed in isothermal conditions, and tracer atoms
are often used. Alternative methods are feasible only
within the detection limits of experimental equipment
available for chemical analysis (microprobe, etc.). In
addition, experimental techniques can be used only for
cases when the spatial resolution of the apparatus is
much smaller than the size scale of concentration
profiles. Otherwise, diffusivity and interfacial concen-
trations, and their temperature dependence cannot be
evaluated, and assessing whether the behaviour is con-
trolled by diffusion or other mechanism must rely on
the time dependence of the amount of material trans-
ferred, or related properties.

This paper shows that mathematical modelling can
be used to describe the role of cooling or heating rates,
as previously reported for diffusion-controlled behav-
iour of particles [9]. Note that the time dependence
cannot be predicted when diffusivity and interfacial
concentration vary with temperature in unknown
ways. It will be demonstrated that it can still

be assessed whether diffusion is the controlling
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mechanism by measuring the dependence of the
amount transferred (or related properties) on the rate
of change in temperature.

Complex analytical solutions or solutions which
require time-consuming numerical calculations, are
usually avoided by experimentalists. On the contrary,
the simplest solutions are most suitable for achieving
a comprehensive insight into the mechanisms and
meaning of fitting parameters. This is the reason for
emphasizing selected theoretical solutions, which are
most likely to be useful for interpreting experimental
results. However, a poor understanding of the condi-
tions required for deriving simplified mathematical
solutions might lead to misinterpretation of results.
This risk can be minimized on finding suitable criteria
for checking the applicability of the models. Applica-
tion of these criteria should not require special math-
ematical skills.

Geometry also matters if attempts are made to
establish the kinetics of the process. Standard solu-
tions widely used by experimentalists are often ob-
tained on assuming that the sample can be considered
semi-infinite, which is simpler than solutions for finite
size. However, finite-layer models are required when
one or more of the following conditions are observed:
(i) small (or thin) samples, (ii) relatively high diffus-
ivity, (iii) long times. Simple criteria will thus be pre-
sented for checking the applicability of semi-infinite
models. Solutions for alternative geometries, and also
for moving boundaries tend to be more complex than
for planar interfaces, and will be dealt with in Part II
[10].

Increasing complexity is also found when surface
concentration is variable with time or temperature. In
this case, one should expect poorer insight into the
mechanisms and fitting parameters, and also higher
risks of misinterpretation of experimental results.
Nevertheless, one might still predict the role of the rate
of change in temperature for selected cases.

2. Analogy between solutions for
isothermal conditions and for
variable temperature

The simplest solutions for diffusion-controlled behav-
iour usually correspond to assuming a semi-infinite
medium with a motionless flat interface, initial uni-
form concentration, without reactions, and transport
controlled by diffusion. For constant diffusivity, the
material balance reduces to Fick’s second law [7]

C/t " D2C/x2 (1)

where x is distance. This can be rearranged to include
the case when diffusivity is time dependent

C/y " 2C/x2 (2)

where time dependence has been transformed by in-
troducing a new independent variable, y, obeying the
condition dy"D(t) dt, or

t

y " P

0

D(t@) dt@ (3)

3550
Note that Equation 3 is also valid for constant diffus-
ivity, in which case y"Dt.

This method can also be used for variable temper-
ature, when temperature varies with time in known
ways. However, the following alternative variables are
most suitable for providing some insight concerning
the role of the rate of change in temperature

y* " K P
T

T*

D(¹ @ ) d¹ @ K (4)

w " xa1@2 (5)

where, ¹
*
is the initial temperature, and a"Dd¹/dt D is

the absolute value of the rate of change in temper-
ature. The value of y* is also an absolute value to
avoid negative values for cooling. On rearranging
Equation 1, one thus obtains

C/y* " 2C/w2 (6)

Equations 1, 2 and 6 are identical except for the
physical meaning (and values) of the independent vari-
ables. One can thus use well-known solutions origin-
ally derived for isothermal conditions and constant
diffusivity to predict the corresponding solutions for
temperature-dependent diffusivity. This method is
based on the analogy between the differential equa-
tions describing those cases, and is readily applied by
substitution of y for Dt if diffusivity is time dependent,
or y* for Dt, and w"xa1@2 for x in non-isothermal
conditions. When the boundaries are located at finite
distances (for example x"¸ for finite samples),
boundaries must also be replaced by ¸a1@2, etc., to
adjust the scale for non-isothermal conditions. This is
true even for cases when the process corresponds to
a moving boundary, as found for diffusion-controlled
growth of particles [9]. This method can also be used
for cases when a boundary condition is time depen-
dent (such as time dependent, C(a, t)"C

0
(t), or tem-

perature dependent, C
0
(¹ )).

Obtaining the values of y* as a function of temper-
ature (or time) usually requires numerical calculations.
However, a typical temperature dependence is
D(¹ )"D

0
exp[!E

$
/(R¹ )], where E

$
is the activa-

tion energy, and R is the perfect gas constant and
some solutions were thus obtained by inserting this
expression in Equation 4 and using numerical integra-
tion. The dimensionless temperature, #, is suitable for
this purpose

# " ¹R/E
$

(7)

and Equation 4 thus becomes

y* " D
0
(E

$
/R) DI (#)!I(#

i
) D (8)

where #
i
"¹

i
R/E

$
, and I (#) is a function of the

dimensionless temperature, #

I(#) " P
#

0

exp(!1/#@ ) d#@ (9)

The values of I(#) are shown in Table I, and can be
used to calculate the values of y*, both for heating or
cooling, with known values of pre-exponential factor,
D , activation energy, E , and initial and final temper-
0 $
atures.



TABLE I Computed values of I(#) (Equation 9), required to obtain solutions for diffusion-controlled processes with variable temperature

# I(#) # I(#) # I(#)

0.01 3.64]10~48 0.042 7.454]10~14 0.4 7.92]10~3

0.011 3.91]10~44 0.045 4.163]10~13 0.45 0.01268
0.012 9.05]10~41 0.05 4.652]10~12 0.5 0.01877
0.013 6.46]10~38 0.055 3.476]10~11 0.55 0.02621
0.014 1.817]10~35 0.06 1.857]10~10 0.6 0.03499
0.015 2.435]10~33 0.065 7.833]10~10 0.65 0.04509
0.016 1.784]10~31 0.07 2.704]10~9 0.7 0.05645
0.017 7.941]10~30 0.08 2.074]10~8 0.8 0.08279
0.018 2.333]10~28 0.09 1.056]10~7 0.9 0.1136
0.019 4.831]10~27 0.1 3.830]10~7 1.0 0.1485
0.02 7.42]10~26 0.11 1.133]10~6 1.2 0.2290
0.021 8.834]10~25 0.12 2.837]10~6 1.4 0.3216
0.022 8.43]10~24 0.13 6.24]10~6 1.6 0.4242
0.023 6.637]10~23 0.14 1.236]10~5 1.8 0.5352
0.024 4.41]10~22 0.15 2.254]10~5 2.0 0.6533
0.025 2.532]10~21 0.16 3.840]10~5 2.2 0.7775
0.026 1.273]10~20 0.17 6.18]10~5 2.4 0.9069
0.027 5.695]10~20 0.18 9.49]10~5 2.6 1.041
0.028 2.295]10~19 0.19 1.399]10~4 2.8 1.179
0.029 8.419]10~19 0.20 1.993]10~4 3 1.321
0.03 2.839]10~18 0.22 3.711]10~4 3.5 1.688
0.032 2.585]10~17 0.24 6.07]10~4 4 2.071
0.034 1.828]10~16 0.26 9.98]10~4 5 2.871
0.036 1.046]10~15 0.28 1.491]10~3 6 3.704
0.038 5.012]10~15 0.3 2.128]10~3 8 5.437
0.04 2.063]10~14 0.35 4.440]10~3 10 7.225

TABLE II Solutions for concentration profiles, concentration gradients, boundary-layer thickness d"(C
*
!C

0
)/ (C/x)

0
, and amount,

M, transferred by diffusion (per unit area) in a semi-infinite medium with a flat surface, and for uniform initial concentration C
*
, constant

surface concentration, C
0
, and case A — constant diffusivity (see Crank [7]), case B — time dependent D(t); case C — variable temperature with

temperature dependent D(¹ ). Equation 3 is used to compute y and Equation 4 (or 8) is used to compute y* with data shown in Table I

Case A Case B Case C

Independent variables x and Dt x and y w"xa1@2 and y*

(C!C
0
)/(C

*
!C

0
) erfMx/[2(Dt)1@2]N erf [x/(2y1@2)] erf[w/(2y*1@2 )]

(C/x)
0

(C
*
!C

0
)/(pDt)1@2 (C

*
!C

0
)/(py)1@2 —

or (C/w)
0

— — (C
*
!C

0
)/(py*)1@2

d (pDt)1@2 (py)1@2 (py*/a)1@2
M/(C
*
!C

0
) 2(Dt/p)1@2 2(y/p)1@2 2[y*/(ap)]1@2
3. Semi-infinite medium with flat surface
and constant surface concentration

Solutions for constant diffusivity are well known and
can be found in textbooks [7]. Analogy between the
relevant differential equation was then used to obtain
the corresponding solutions for cases when diffusivity
varies with time or temperature, as shown in Table II,
with uniform initial concentration, C

*
, and constant

surface concentration C
0
. This was based on changing

the independent variables as shown above. For the
case when diffusivity is temperature dependent, sur-
face concentration is nearly constant, and temperature
varies linearly with time this yields the following solu-
tions for the concentration profile, and boundary layer
thickness d"D (C

*
!C

0
)/ (C/x)

0
D

(C!C
0
)/ (C

*
!C

0
)"erfMxa1@2/[2y*1@2(¹ )]N (10)
d " (py* (¹ )/a)1@2 (11)
Equations 10 and 11 provide some insight into the
role of cooling or heating rates, even when the temper-
ature dependence of diffusivity is unknown, and y*(¹ )
cannot be calculated. In fact, the scale of the indepen-
dent variable w"xa1@2 is the same for different values
of rate of change in temperature, a, when the initial
and final temperatures are identical for every experi-
ment, and one can thus conclude that the actual scale
of x varies as a~1@2. This is also true for the boundary
layer thickness d"(py*/a)1@2.

The effect of cooling or heating rates on the amount
transferred by diffusion in non-isothermal conditions,
is a two-fold effect both because the boundary layer
thickness decreases as a~1@2 for identical initial and
final temperatures, and also because the actual time
scale decreases with increasing rate of change in tem-
perature. Combination of both effects is described in

Appendix A and yields the following expression for
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the amount transferred per unit area

M " 2a~1@2(C
*
!C

0
)(y* (¹ )/p)1@2 (12)

When transfer is controlled by an interfacial process
the amount of material transferred should vary as a~1

(see also Appendix A).

4. Semi-infinite media with flat surface and
variable surface concentration

The simplest solution for variable surface concentra-
tion corresponds to nearly constant diffusivity, and
was obtained by analogy with heat conduction in
solids [11]

C!C
*
"

x

2p1@2

]P
t

0

[C
0
(t@)!C

*
] expM!x2/[4D(t!t@ )]N
[D (t!t@ )]3@2

Ddt@

(13)

with uniform initial concentration, C
*
.

Changes in surface concentration are mostly likely
to be related to variable temperature, C

0
(¹ ), as usu-

ally found for interphase equilibria, and in addition,
diffusivity is also likely to vary with temperature.
However, one can also take advantage of the analogy
between Equations 1 and 6, to obtain the solution for
the non-isothermal problem by replacing y*(¹ ) for
Dt, w"xa1@2 for x, and C

0
(¹ ) or C

0
[y* (¹ )] for C

0
(t)

C!C
*
"

xa1@2

2p1@2 P
y*(T )

0

]
[C

0
(y*@ )!C

*
] expMx2a/[4(y*@!y*)]N
(y*!y*@)3@2

dy*@

(14)

Equation 14 still requires numerical integration for
a generic temperature dependence of surface concen-
tration. Nevertheless, the concentration profiles
C"f [w, y* (¹ )] described by Equation 14 remain
unchanged for several experiments with different rates
of change in temperature, provided that the initial and
final temperatures are the same for every experiment.
For identical scales of variable w"xa1@2, one expects
the scale of original distance x to vary as a~1@2, as
previously found for constant surface concentration.
This trend describes the effect of the rate of change in
temperature on the boundary-layer thickness. There-
fore, by cooling from a given initial temperature
to room temperature, at different rates, one should
expect

d
2
/d

1
" (a

1
/a

2
)1@2 (15)

The unique concentration dependence C"

f [w, y* (¹ )], with a temperature-dependent bound-
ary condition C(0, t)"C

0
(¹ ) or C[y* (¹ )], also

shows that the concentration gradient (C/w)
0

de-
pends on temperature only. This condition is sufficient
to ensure that the amount of material transferred
varies as a~1@2 (see Appendix A), or
M " a~1@2M* (¹ ) (16)
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For example, for two experiments performed on cool-
ing from a given temperature to room temperature, at
different rates, the amount transferred should vary as
M

2
/M

1
"(a

1
/a

2
)1@2. Alternatively, several data for

different rates of change in temperature can be plotted
as Ma1@2 versus ¹, and should fit a single dependence
if the process is controlled by diffusion.

5. Plane sheet with constant surface
concentration

Real systems are finite and one must thus check the
validity of the assumptions upon which this semi-
infinite model was derived, namely: (i) behaviour iden-
tical to that expected for semi-infinite media, and
(ii) nearly flat interface. The semi-infinite condition is
nearly true when the boundary layer thickness is suffi-
ciently smaller than the dimensions of the sample.
Actually, the boundary layer thickness varies with
time and with the order of magnitude of diffusivity,
and this dependence is very simple for constant diffus-
ivity, in which case d"(pDt)1@2. For example, d can be
lower than 1 lm for D+10~16 m2 s~1 and t)1 h, in
which case semi-infinite models can be used for de-
scribing processes such as diffusion-controlled impu-
rity segregation at grain boundaries in polycrystalline
materials with average grains sizes as small as 10 lm.
The boundary layer thickness must also be much
smaller than the radius of curvature to validate the
assumption that the interface is nearly flat.

Typically, the boundary-layer thickness should be
smaller than half sample size for cases when diffusion
is asymmetrical and transfer occurs at a single side of
the plane sheet, or smaller than ¸/2 for nearly sym-
metrical diffusion at both surfaces, where 2¸ is the
thickness of the sheet. In this case one might write
(pDt)1@2(¸/2 for constant diffusivity, (py)1@2(¸/2
for time-dependent diffusivity D(t), or (py*/a)1@2(
¸/2 for variable temperature. The semi-infinite
criterion might be rewritten Dt/¸2(0.08, or
y/¸2(0.08 for isothermal processes, and

y*/(¸2a)(0.08 (17)

for variable temperature.
A plane sheet may be a suitable geometrical model

for platelet-like particles, with a small thickness to
length ratio, and this should be described by solutions
for diffusion in plane sheets. Analogy between Equa-
tions 1, 2 and 6 can be used to obtain the solution for
time-dependent D(t), or temperature dependent D(¹ )
with variable temperature, for uniform initial concen-
tration C

*
, and constant surface concentration at both

surfaces (Table III). The solutions for constant D are
available in textbooks [7], and solutions for variable
temperature (case C) become:

(C!C
0
)

(C
*
!C

0
)
"(4/p)

=
+
0

(!1)n (2n#1)~1

]cos[(2n#1)px/(2¸)]
]exp[!p2 (2n#1)2y* (¹ )/ (4¸2a)] (18)



TABLE III Solutions for concentration profiles and amount of material gained by a plane sheet of thickness 2¸ for cases when case A,
diffusivity is constant (Crank [7]; case D, diffusivity is time dependent; case C, variable temperature with temperature dependent D(¹ )

(C!C
0
)/(C

*
!C

0
) M/[¸(C

0
!C

*
)]

Case A (4/p)
=
+
0

(!1)n(2n#1)~1cos[(2n#1)px/(2¸)] 1!8
=
+
0

[p(2n#1)]~2expM![p(2n#1)/(2¸)]2DtN

]expM![p(2n#1)/(2¸)]2DtN

Case B (4/p)
=
+
0

(!1)n(2n#1)~1cos[(2n#1)px/(2¸)] 1!8
=
+
0

[p(2n#1)]~2expM![p(2n#1)/(2¸)]2yN

]expM![p(2n#1)/(2¸)]2yN

Case C (4/p)
=
+
0

(!1)n(2n#1)~1cos[(2n#1)px/(2¸)] 1!8
=
+
0

[p(2n#1)]~2expM![p(2n#1)]2
]expM![p(2n#1)]2y* (¹ )/(4¸2a)N ]y* (¹ )/(4¸2a)N
and

M

¸(C
0
!C

*
)
"1!8

=
+
0

[p (2n#1)]~2

]exp[!p2 (2n#1)2y* (¹ )/(4¸2a)]

(19)

In these equations, ¸ is half thickness of the plane
sheet, with 0(x(¸, and M is the amount of mater-
ial gained by the plane sheet (per unit area). Equa-
tion 4 (or Equation 8) can be used to calculate the
values of y*.

For Dt/ (4¸2) or y*/ (4a¸2) larger than about 0.5
one may neglect the second term and terms of higher
order. For example, the truncated solution for changes
of concentration reduces

(C!C
0
)/(C

*
!C

0
)+(4/p) cos[px/ (2¸)]

]exp[!p2y* (¹ )/(4a¸2)] (20)

and the truncated solution for the amount transferred
becomes

M/[¸(C
0
!C

*
)]+1!(8/p2)

]expM![p/(2¸)]2a~1y* (¹ )N
(21)

The quantity M
=
"¸(C

0
!C

*
) is the amount

transferred for y*"R, which corresponds to a state
when the final concentration becomes uniform, and
equal to C

0
throughout the sample. Actually, M

=
may

not be reached during cooling because y* cannot
exceed a maximum value, as found by using Equations
7—9, with data shown in Table I. Note that I (#) de-
creases rapidly with decreasing #, especially for
# lower than about 0.5, which is the case even for
relatively low activation energies. For example, an
activation energy as low as 10 kJmol~1 gives
#

*
"R¹

*
/E

$
+1 at 1000 °C, and #+0.25 room tem-

peratures, and in this case I (#
*
)!I (#)+I(#

*
). One

may thus conclude that the maximum value of y*
reached on cooling is

y*
.!9

+D
0
(E

$
/R)I(#

*
) (22)

where #
*
"¹

*
R/E

$
. Substitution of y*

.!9
in Equa-

tion 19 can be used to evaluate the maximum gain (or
loss) on cooling. Fig. 1 shows that the rate of mass

transfer vanishes at a temperature at which y*(¹ )
Figure 1 Weight loss of a plane sheet per unit area, on cooling, for
constant surface concentration, C

0
, and (——) uniform initial con-

centration, C
*
; (—·—) the first order aproximation (Equation 21),

(——— ) the dependence of y* (¹ ), (Equation 4). The initial temper-
ature is ¹

*
"1273 K, the diffusion coefficient varies as

D(¹ )"D
0
exp[!E

$
/(R¹ )], with activation energy E

$
"100 kJ

mol~1. The remaining parameters correspond to the condition
D

*
¹

*
/(4¸2a)"50, with D

*
"D (¹

*
).

becomes nearly independent of further decrease in
temperature. Note also that the truncated solution
(Equation 21) is nearly true for y*/(4¸2a) greater than
about 0.5.

Equations 18 and 19 describe how the rate of
change in temperature and thickness of the slab deter-
mine the concentration profiles and amount transfer-
red across the surface. This type of effect is easily
anticipated by taking into account that the relevant
scale for non-isothermal conditions is xa1@2 rather
than x (and ¸a1@2 rather than ¸). For example, two
experiments might be designed by adjusting the thick-
ness of the samples and the rate of change in temper-
ature to ensure identical values of ¸2a, or

a
2
/a

1
" (¸

1
/¸

2
)2 (23)

with identical initial and final temperatures. In this
case, the relative amount of material transferred
M/[¸(C !C )] should still be the same for every
0 *
experiment.
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Figure 2 Concentration profiles developed in a plane sheet, on
cooling from initial temperature ¹

*
"1273 K to room temperature

(298 K), for D(¹ )"D
0
exp[!E

$
/(R¹ )], with values E

$
"50, 100,

200 shown in the figure, and surface concentration C
0
(¹ )"

C exp[(E /R)(¹~1!¹~1)], with E "100 kJmol~1. Other para-

6. Plane sheet with temperature
dependent surface concentration
and diffusivity

Some solutions for time-dependent surface concentra-
tion and constant diffusivity have been derived by
analogy with equivalent heat-conduction processes
[11]. However, temperature is the factor most likely to
cause changes in surface concentration, C

0
(¹ ), and

diffusivity D(¹ ), and one should thus recover the
temperature dependence proposed for non-isothermal
conditions. In this case, the analogy between Equa-
tions 1 and 6 is again suitable to obtain the relevant
solutions after the required changes in independent
variables. For example, for uniform initial concentra-
tion, C

*
, and when surface concentration is C

0
(¹ ) at

both interfaces (symmetry) one obtains

C!C
*
"

=
+
0

(!1)n4p(2n#1) cos[(2n#1)px/(2¸)]

]P
T

T*

[C
0
(y*@)!C

*
](4¸2a)~1

]expM[p (2n#1)]2 ( y* @!y* )/(4¸2a )N (24)

for 0)x)¸. The amount of material gained by the
sample (per unit area) can be calculated on integrating
[C(x)!C

*
]dx.

Obtaining numerical solutions of Equation 24 is
time consuming because the decay of high order terms
in Equation 24 is very slow. In addition, adding a very
large number of terms leads to significant rounding-off
of errors. These were the reasons for using an alterna-
tive method to compute concentration profiles
(Appendix B).

Selected cases might be useful to provide some
insight into conditions when simpler models can be
* # * #
meters correspond to the condition D

*
¹

*
/(4¸2a)"1.
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Figure 4 Relative weight changes on cooling from initial temper-
ature ¹

*
"1273 K, with diffusivity D(¹ )"D

0
exp[!E

$
/(R¹ )],

and surface concentration C
0
(¹ )"C

*
exp[(E

#
/R)(¹~1

*
!¹~1)].

M
*
is the initial solute content of the plane sheet. The values of

activation energies are E
$
"100 kJmol~1, and E

#
"50, 100 and

200 kJmol~1 (shown in the figure). Other parameters correspond to

Figure 3 Concentration profiles developed in a plane sheet, on
cooling from initial temperature ¹

*
"1273 K to room temperature

(298 K), for diffusivity D (¹ )"D
0
exp[!E

$
/(R¹ )], with E

$
"

100 kJmol~1, and surface concentration C
0
(¹ )"C

*
exp[(E

#
/R)

(¹~1
*

!¹~1)], with E
#
"50, 100 and 200 kJmol~1 (shown in the

figure). Other parameters correspond to the condition
D

*
¹

*
/(4¸2a)"1.

used. For example, Figs 2 and 3 show concentration
profiles and Fig. 4 shows the mass transferred, com-
puted for cases when surface concentration is de-
scribed by C

0
(¹ )"C

*
exp[(E

#
/R) (¹~1

*
!¹~1)]. In

this case, the rate of change of C
0
(¹ ) with variable

¹ increases with the activation energy E
#
, and for very

high E
#
the surface concentration drops to zero within

a short time interval, and for a small drop in temper-
ature. This change is nearly step-like for very high E

#
,

and solutions thus tend towards Equations 18 and 19,
with negligible surface concentration C

0
+0 (shown

dashed). However, this only occurs if the relative rate
of change in surface concentration is much higher
the condition D
*
¹

*
/(4¸2a)"1.



than the rate of changes in diffusivity, which is true for
E
#
AE

$
.

7. Conclusions
A number of solutions for diffusion with constant
diffusivity were extended to describe diffusion in non-
isothermal conditions with temperature-dependent
D(¹ ) and temperature-dependent C

0
(¹ ). Some inter-

esting solutions describe the effects of the rate of
change in temperature, a. The simplest analysis is for
a nearly flat interface, when the spatial changes in
concentration can be adjusted by a factor a1@2, and the
boundary-layer thickness is proportional to 1/a1@2.
The theoretical predictions can be checked by plotting
several concentration profiles measured for different
rates of change in temperature. In addition, experi-
ments may be interpreted even when the actual de-
pendence for D(¹ ) and C

0
(¹ ) is unknown.

The effects of the rate of change in temperature on
the amount transferred are also useful to assess
whether the process is controlled by diffusion or by an
interfacial process, even when the actual temperature
dependence of some relevant physicochemical para-
meters is unknown.

Diffusion in a plane sheet is dependent on its thick-
ness. However, several sets of experimental data for
different cooling or heating rates are still expected to
reduce to a unique temperature-dependent concentra-
tion profile when the thickness, ¸, and the rate of
change in temperature, a, are both adjusted to main-
tain a constant value of ¸a1@2.

Appendix A. Effects of rate of change in
temperature on the amount
transferred

The amount transferred is related to concentration
gradients when the process is controlled by diffusion,
and the amount lost per unit area across a plane
surface varies as

dM " D (C/x)
0
dt (A1)

One can thus use the concentration gradients shown
in Table II to obtain the solutions for describing
M versus t. A similar method can be used to obtain
solutions for cases when diffusivity is time-dependent,
with constant surface concentration, by substitution
of D dt by dy. The concentration gradient can be read
from Table II and substitution in Equation A1 yields
dM"(C

*
!C

0
) (py)~1@2dy, which is easily integrated

to give the solution shown in Table II

M " 2(C
*
!C

0
) (y/p)1@2 (A2)

The solution for temperature-dependent diffusivity
is affected by the dependence of concentration gradi-
ents on the rate of change in temperature. Taking into
account the inverse transformation of variables
x"w/a1@2 one obtains (C/x)

0
"a1@2 (C/w)

0
, and

substitution of this result, and also dt"d¹/a in
Equation A1 yields
dM " a~1@2(C/w)
0
D d¹ (A3)
The dependence on time has thus been transformed to
yield an alternative temperature dependence. Note
that (C/w)

0
is also a function of temperature (or y*)

only, as demonstrated for the case when surface con-
centration is constant (Table II). Therefore, Equa-
tion A4 still describes a unique dependence of the
amount transferred on temperature

M " a~1@2M* (¹ ) (A4)

where

M*(¹ )"P
T

T*

(C/w)
0
D(¹ ) d¹ (A5)

This generic dependence described by Equation A4 is
true even for the case when surface concentration
varies with temperature, C (0, t)"C

0
(¹ ), which can be

rewritten C
0
(y*).

The simplest solution is for constant surface con-
centration, in which case (C/w)

0
"(C

*
!C

0
)/

(py*)1@2 (Table II). On recovering the transformation
of variable D(¹ )d¹"dy*, and solving Equation A5
one thus obtains

M"2(C
*
!C

0
)[y*/(pa)]1@2 (A6)

The rate of change in temperature also effects the
amount transferred for cases when mass transfer is
controlled by a slow interfacial process. In these cases
the rate of transfer is dependent on the difference
between equilibrium and actual concentration
(C

%2
!C), and on assuming first-order kinetics

dM/dt"K (¹ )(C
%2
!C) (A7)

where K(¹ ) is a temperature-dependent kinetic con-
stant. In addition, one might assume that the driving
force (C

%2
!C) is either constant or temperature de-

pendent, and substitution of dt"d¹/a in Equa-
tion A7 thus yields

M"a~1 P
T

T*

K(¹ @ )(C
%2
!C) d¹ @ (A8)

Appendix B
Obtaining solutions for Equation 24 requires numer-
ical integrations for sufficiently large values of n. Un-
fortunately, the high-order terms decay slowly, and
a large number of terms must be computed for this
purpose. In addition to requiring long computing
time, adding a very large number of terms also in-
creases rounding-off errors. These complications can
be minimized by transforming Equation 24 as follows

C!C
*
"4

=
+
0

(!1)n[p(2n#1)]~1

]cos[(2n#1)px/(2¸)]

][F(n, n)!F(R, n)]#F (R, n)S
1
(R) (A9)

where
n"y*p2/(4¸2a) (A10)
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and

F(n, n)"P
(2n`1)2n

0

exp[n@!(2n#1)2n]

](C
0
(n@ )!C

*
) dn@ (A11)

S
1
(N)"4

N
+
0

(!1)n[p(2n#1)]~1cos[(2n#1)px/(2¸)]

(A12)

This transformation yields terms F (n, n) which con-
verge rapidly to F(R, n). Typically F (n, n)+F (R, n)
for n*10, and the differences F (n, n)!F(R, n) thus
vanish rapidly, avoiding the complications related to
having to compute a very large number of terms. In
addition, S

1
(R)"1.

The numerical method is then started by using
a multistep integration formula to solve Equation 4 as
follows

¹
j`1

"¹
j
#4d (A13)

y*
j`1

"y*
j
#d (14D(¹

j
)#64D(¹

j
#d)

#24D(¹
j
#2d)#64D (¹

j
#3d)

#14D(¹
j
#4d))/180 (A14)

where d corresponds to the increments of temperature.
The increment d was sequentially adjusted to yield
relative changes of diffusivity smaller than 0.1% per

step, and was also kept smaller than $1 K. This

3556
algorithm yields a set of discrete pairs of values ¹
j
; y*

j
,

and the corresponding values of n
j

were computed
by multiplying by p2/(4¸2a).

The values of F (n, n), (Equation A11), were cal-
culated by decomposition in small intervals, and
C

0
(n@ )!C

*
thus varies almost linearly with n@, which

yields analytical solution for every interval.
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